Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Chinese Journal of Biotechnology ; (12): 2027-2039, 2023.
Article in Chinese | WPRIM | ID: wpr-981187

ABSTRACT

The discovery of new enzymes for poly(ethylene terephthalate) (PET) degradation has been a hot topic of research globally. Bis-(2-hydroxyethyl) terephthalate (BHET) is an intermediate compound in the degradation of PET and competes with PET for the substrate binding site of the PET-degrading enzyme, thereby inhibiting further degradation of PET. Discovery of new BHET degradation enzymes may contribute to improving the degradation efficiency of PET. In this paper, we discovered a hydrolase gene sle (ID: CP064192.1, 5085270-5086049) from Saccharothrix luteola, which can hydrolyze BHET into mono-(2-hydroxyethyl) terephthalate (MHET) and terephthalic acid (TPA). BHET hydrolase (Sle) was heterologously expressed in Escherichia coli using a recombinant plasmid, and the highest protein expression was achieved at a final concentration of 0.4 mmol/L of isopropyl-β-d-thiogalactoside (IPTG), an induction duration of 12 h and an induction temperature of 20 ℃. The recombinant Sle was purified by nickel affinity chromatography, anion exchange chromatography, and gel filtration chromatography, and its enzymatic properties were also characterized. The optimum temperature and pH of Sle were 35 ℃ and 8.0, and more than 80% of the enzyme activity could be maintained in the range of 25-35 ℃ and pH 7.0-9.0 and Co2+ could improve the enzyme activity. Sle belongs to the dienelactone hydrolase (DLH) superfamily and possesses the typical catalytic triad of the family, and the predicted catalytic sites are S129, D175, and H207. Finally, the enzyme was identified as a BHET degrading enzyme by high performance liquid chromatography (HPLC). This study provides a new enzyme resource for the efficient enzymatic degradation of PET plastics.


Subject(s)
Actinomycetales/genetics , Hydrolases/metabolism , Phthalic Acids/chemistry , Polyethylene Terephthalates/metabolism
2.
Chinese Journal of Biotechnology ; (12): 2015-2026, 2023.
Article in Chinese | WPRIM | ID: wpr-981186

ABSTRACT

PET (polyethylene terephthalate) is one of the most important petrochemicals that is widely used in mineral water bottles, food and beverage packaging and textile industry. Because of its stability under environmental conditions, the massive amount of PET wastes caused serious environmental pollution. The use of enzymes to depolymerize PET wastes and upcycling is one of the important directions for plastics pollution control, among which the key is the depolymerization efficiency of PET by PET hydrolase. BHET (bis(hydroxyethyl) terephthalate) is the main intermediate of PET hydrolysis, its accumulation can hinder the degradation efficiency of PET hydrolase significantly, and the synergistic use of PET hydrolase and BHET hydrolase can improve the PET hydrolysis efficiency. In this study, a dienolactone hydrolase from Hydrogenobacter thermophilus which can degrade BHET (HtBHETase) was identified. After heterologous expression in Escherichia coli and purification, the enzymatic properties of HtBHETase were studied. HtBHETase shows higher catalytic activity towards esters with short carbon chains such as p-nitrophenol acetate. The optimal pH and temperature of the reaction with BHET were 5.0 and 55 ℃, respectively. HtBHETase exhibited excellent thermostability, and retained over 80% residual activity after treatment at 80 ℃ for 1 hour. These results indicate that HtBHETase has potential in biological PET depolymerization, which may facilitate the enzymatic degradation of PET.


Subject(s)
Hydrolases/metabolism , Bacteria/metabolism , Hydrolysis , Polyethylene Terephthalates/metabolism
3.
Chinese Journal of Biologicals ; (12): 793-799, 2023.
Article in Chinese | WPRIM | ID: wpr-996486

ABSTRACT

@#Objective To express the sucrose isomerase(SI) fused with the tetrameric coiled-coil domain of the cell surface protein tetrabrachion(TdoT),and study the enzymatic properties of the recombinant enzymes.Methods The gene of SI fused with TdoT at the N/C terminus was cloned into the expression vectors respectively to construct the recombinant expression vectors pET-24a-TdoT-SI and pET-24b-SI-TdoT,which were transformed into E.coli BL21(DE3) and induced to express recombinant enzymes.The enzymatic properties and product specificity of the purified recombinant enzymes were studied.Results TdoT-SI and SI-TdoT were expressed as inclusion bodies with catalytic activity,while SI inclusion bodies without TdoT showed no catalytic activity.The results of enzymatic property analysis showed that the optimum reaction temperature for TdoT-SI and SI-TdoT active inclusion bodies was 40 ℃,and the optimum reaction pH was 5.5 and 5.0,respectively.The K_m of TdoT-SI active inclusion bodies was(103.9±9.5) mmol/L and the k_(cat)/K_m was(0.06±0.002) L/(mmol·s),while the K_m of SI-TdoT active inclusion bodies was(54.4±6.6) mmol/L and the k_(cat)/K_m was(0.03±0.002) L/(mmol·s).The results of product specificity analysis exhibited that the proportion of isomaltulose in the product did not change significantly,while the proportion of trehalose decreased,and the proportion of monosaccharides increased with increasing reaction temperature.Conclusion The active inclusion bodies of SI fused with coiled-coil domain were successfully prepared by fusion expression technology.As a novel self-immobilized enzyme,it has the advantage of simultaneous expression and immobilization,which provides a new strategy for large-scale preparation and efficient utilization of recombinant SI.

4.
Chinese Journal of Biotechnology ; (12): 4705-4718, 2022.
Article in Chinese | WPRIM | ID: wpr-970342

ABSTRACT

Catalase is widely used in the food, medical, and textile industries. It possesses exceptional properties including high catalytic efficiency, high specificity, and environmental friendliness. Free catalase cannot be recycled and reused in industry, resulting in a costly industrial biotransformation process if catalase is used as a core ingredient. Developing a simple, mild, cost-effective, and environmentally friendly approach to immobilize catalase is anticipated to improve its utilization efficiency and enzymatic performance. In this study, the catalase KatA derived from Bacillus subtilis 168 was expressed in Escherichia coli. Following separation and purification, the purified enzyme was prepared as an immobilized enzyme in the form of enzyme-inorganic hybrid nanoflowers, and the enzymatic properties were investigated. The results indicated that the purified KatA was obtained through a three-step procedure that included ethanol precipitation, DEAE anion exchange chromatography, and hydrophobic chromatography. Then, by optimizing the process parameters, a novel KatA/Ca3(PO4)2 hybrid nanoflower was developed. The optimum reaction temperature of the free KatA was determined to be 35 ℃, the optimum reaction temperature of KatA/Ca3(PO4)2 hybrid nanoflowers was 30-35 ℃, and the optimum reaction pH of both was 11.0. The free KatA and KatA/Ca3(PO4)2 hybrid nanoflowers exhibited excellent stability at pH 4.0-11.0 and 25-50 ℃. The KatA/Ca3(PO4)2 hybrid nanoflowers demonstrated increased storage stability than that of the free KatA, maintaining 82% of the original enzymatic activity after 14 d of storage at 4 ℃, whereas the free KatA has only 50% of the original enzymatic activity. In addition, after 5 catalytic reactions, the nanoflower still maintained 55% of its initial enzymatic activity, indicating that it has good operational stability. The Km of the free KatA to the substrate hydrogen peroxide was (8.80±0.42) mmol/L, and the kcat/Km was (13 151.53± 299.19) L/(mmol·s). The Km of the KatA/Ca3(PO4)2 hybrid nanoflowers was (32.75±2.96) mmol/L, and the kcat/Km was (4 550.67±107.51) L/(mmol·s). Compared to the free KatA, the affinity of KatA/Ca3(PO4)2 hybrid nanoflowers to the substrate hydrogen peroxide was decreased, and the catalytic efficiency was also decreased. In summary, this study developed KatA/Ca3(PO4)2 hybrid nanoflowers using Ca2+ as a self-assembly inducer, which enhanced the enzymatic properties and will facilitate the environmentally friendly preparation and widespread application of immobilized catalase.


Subject(s)
Catalase , Nanostructures/chemistry , Hydrogen Peroxide/metabolism , Enzymes, Immobilized/chemistry , Catalysis
5.
Chinese Journal of Biotechnology ; (12): 4644-4657, 2022.
Article in Chinese | WPRIM | ID: wpr-970337

ABSTRACT

β-glucosidase has important applications in food, medicine, biomass conversion and other fields. Therefore, exploring β-glucosidase with strong stability and excellent properties is a research hotspot. In this study, a GH3 family β-glucosidase gene named Iubgl3 was successfully cloned from Infirmifilum uzonense. Sequence analysis showed that the full length of Iubgl3 was 2 106 bp, encoding 702 amino acids, with a theoretical molecular weight of 77.0 kDa. The gene was cloned and expressed in E. coli and the enzymatic properties of purified IuBgl3 were studied. The results showed that the optimal pH and temperature for pNPG hydrolysis were 5.0 and 85 ℃, respectively. The enzyme has good thermal stability, and more than 85% of enzyme activity can be retained after being treated at 80 ℃ for2 h. This enzyme has good pH stability and more than 85% of its activity can be retained after being treated at pH 4.0-11.0 for 1 h. It was found that the enzyme had high hydrolysis ability to p-nitrophenyl β-d-glucoside (pNPG) and p-nitrophenyl β-d-xylopyranoside (pNPX). When pNPG was used as the substrate, the kinetic parameters Km and Vmax were 0.38 mmol and 248.55 μmol/(mg·min), respectively, and the catalytic efficiency kcat/Km was 6 149.20 s-1mmol-1. Most metal ions had no significant effect on the enzyme activity of IuBgl3. SDS completely inactivated the enzyme, while EDTA increased the enzyme activity by 30%. This study expanded the β-glucosidase gene diversity of the thermophilic archaea GH3 family and obtained a thermostable acid bifunctional enzyme with good industrial application potential.


Subject(s)
beta-Glucosidase/chemistry , Archaea/metabolism , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Temperature , Glucosides , Enzyme Stability , Substrate Specificity , Kinetics
6.
Chinese Journal of Biotechnology ; (12): 266-275, 2021.
Article in Chinese | WPRIM | ID: wpr-878560

ABSTRACT

As a type of prebiotics and dietary fiber, inulin performs plenty of significant physiological functions and is applied in food and pharmaceutical fields. Inulosucrase from microorganisms can use sucrose as the substrate to synthesize inulin possessing higher molecular weight than that from plants. In this work, a hypothetical gene coding inulosucrase was selected from the GenBank database. The catalytic domain was remained by N- and C- truncation strategies, constructing the recombinant plasmid. The recombinant plasmid was expressed in E. coli expression system, and after purifying the crude enzyme by Ni²⁺ affinity chromatography, a recombinant enzyme with a molecular weight of approximately 65 kDa was obtained. The optimal pH and temperature of the recombinant enzyme were 5.5 and 45 °C, respectively, when sucrose was used as the sole substrate. The activity of this enzyme was inhibited by various metal ions at different degrees. After purifying the produced polysaccharide, nuclear magnetic resonance analysis was used to determine that the polysaccharide was inulin connected by β-(2,1) linkages. Finally, the conditions for the production of inulin were optimized. The results showed that the inulin production reached the maximum, approximately 287 g/L after 7 h, when sucrose concentration and enzyme dosage were 700 g/L and 4 U/mL, respectively. The conversion rate from sucrose to inulin was approximately 41%.


Subject(s)
Escherichia coli/genetics , Hexosyltransferases/genetics , Inulin , Oligosaccharides , Sucrose
7.
Chinese Journal of Biotechnology ; (12): 218-227, 2021.
Article in Chinese | WPRIM | ID: wpr-878556

ABSTRACT

β-N-acetylglucosaminidases (NAGases) can convert natural substrates such as chitin or chitosan to N-acetyl-β-D glucosamine (GlcNAc) monomer that is wildly used in medicine and agriculture. In this study, the BcNagZ gene from Bacillus coagulans DMS1 was cloned and expressed in Escherichia coli. The recombinant protein was secreted into the fermentation supernatant and the expression amount reached 0.76 mg/mL. The molecular mass of purified enzyme was 61.3 kDa, and the specific activity was 5.918 U/mg. The optimal temperature and pH of the BcNagZ were 75 °C and 5.5, respectively, and remained more than 85% residual activity after 30 min at 65 °C. The Mie constant Km was 0.23 mmol/L and the Vmax was 0.043 1 mmol/(L·min). The recombinant BcNagZ could hydrolyze colloidal chitin to obtain trace amounts of GlcNAc, and hydrolyze disaccharides to monosaccharide. Combining with the reported exochitinase AMcase, BcNagZ could produce GlcNAc from hydrolysis of colloidal chitin with a yield over 86.93%.


Subject(s)
Acetylglucosamine , Acetylglucosaminidase , Bacillus coagulans , Chitin , Chitinases , Hydrogen-Ion Concentration , Recombinant Proteins/genetics
8.
Chinese Journal of Biotechnology ; (12): 2623-2632, 2021.
Article in Chinese | WPRIM | ID: wpr-887828

ABSTRACT

α-L-rhamnosidase is a very important industrial enzyme that is widely distributed in a variety of organisms. α-L-rhamnosidase of different origins show functional diversity. For example, the optimal pH of α-L-rhamnosidase from bacteria is close to neutral or alkaline, while the optimal pH of α-L-rhamnosidase from fungi is in the acidic range. Furthermore, the enzymatic properties of α-L-rhamnosidases of different origins differ in terms of the optimal temperature, the thermal stability, and the substrate specificity, which determine the different applications of these enzymes. In this connection, it is crucial to elucidate the similarities and differences in the catalytic mechanism and substrate specificity of α-L-rhamnosidase of different origins through analyzing its enzymatic properties. Moreover, it is important to explore and understand the effects of aglycon and metal cations on enzyme activity and the competitive inhibition of L-rhamnose and glucose on enzymes. These knowledge can help discover α-L-rhamnosidase of industrial significance and promote its industrial application.


Subject(s)
Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Rhamnose , Substrate Specificity , Temperature
9.
Chinese Journal of Biotechnology ; (12): 4395-4405, 2021.
Article in Chinese | WPRIM | ID: wpr-921515

ABSTRACT

To investigate the enzyme properties of the black sesame polyphenol oxidase (BsPPO), a synthesized Bsppo gene was cloned into the vector pMAL-c5x and expressed in E. coli. Subsequently, the MBP fusion label in the recombinant protein was removed by protease digestion after affinity purification. The synthesized Bsppo gene contained 1 752 bp which encodes 585 amino acids with a deduced molecular weight of 65.3 kDa. Transformation of the recombinant vector into E. coli BL21(DE3) resulted in soluble expression of the fusion protein MBP-BsPPO. The enzymatic properties of the recombinant BsPPO was investigated after MBP fusion tag excision followed by affinity purification. The results demonstrated that the optimal temperature and pH for BsPPO was 25°C and 4.0, respectively. BsPPO exhibited a good stability under low temperature and acidic environment. Low-intensity short-term light exposure increased the activity of BsPPO. Cu²⁺ could improve the activity of BsPPO while Zn²⁺ and Ca²⁺ showed the opposite effect. BsPPO could catalyze the oxidation of monophenols, diphenols, and triphenols, and exhibited good catalytic activity on l-tyrosine and vanillic acid. Moreover, BsPPO exhibited high catalytic activity on black sesame metabolites, including 2-methoxy cinnamic acid, indole-3-carboxylic acid and phloretin. These results may serve as a basis for further characterization of BsPPO.


Subject(s)
Catechol Oxidase/genetics , Cloning, Molecular , Escherichia coli/metabolism , Recombinant Proteins/genetics , Sesamum/genetics
10.
Chinese Journal of Biotechnology ; (12): 4363-4372, 2021.
Article in Chinese | WPRIM | ID: wpr-921512

ABSTRACT

4,6-α-glucosyltransferases (4,6-α-GTs), which converts amylose into α(1-6) bonds-containing α-glucan, possesses great application potential in enzymatic synthesis of dietary fiber. Primers were designed according to the conserved motifs existing in the amino acid sequence of 4,6-α-GTs, and used to amplify a putative GTFB-Like 4,6-α-GTs gene (named as gtf16) from the genomic DNA of Lactobacillus. The gtf16 gene was cloned into the plasmid pET15b, expressed in Escherichia coli BL21(DE3), followed by purification and characterization. The optimum pH and the optimum temperature of the purified enzyme were 5.0 and 40 °C, respectively. The biotransformation product of this enzyme was systematically characterized by thin-layer chromatography, NMR spectroscopy, and hydrolysis reaction. The Gtf16-catalyzed product shows a similar structure to that of the isomalto/malto-polysaccharide (IMMP), which is the amylose-derived product catalyzed by GtfB from Lactobacillus reuteri 121. Moreover, The Gtf16-catalyzed product contains up to 75% of α(1-6) bonds and has an average molecular weight of 23 793 Da. Furthermore, the content of the anti-digestive components was 88.22% upon hydrolysis with digestive enzymes.


Subject(s)
Bacterial Proteins/genetics , Glucans , Glucosyltransferases/genetics , Limosilactobacillus fermentum/enzymology
11.
Chinese Journal of Biotechnology ; (12): 1546-1555, 2020.
Article in Chinese | WPRIM | ID: wpr-826822

ABSTRACT

Sucrose phosphorylase (SPase) gene from Leuconostoc mesenteroides ATCC 12291 was synthesised after codon optimization, and inserted into pET-28a plasmid to generate pET-28a-spase. The recombinant strain Escherichia coli BL21 (DE3)/pET-28a-spase was induced for Spase expression. The recombinant protein Spase was purified and characterized. The specific enzyme activity of SPase was 213.98 U/mg, the purification ratio was 1.47-fold, and the enzyme activity recovery rate was 87.80%. The optimal temperature and the optimal pH of the SPase were identified to be 45 °C and 6.5 respectively, and Km, Vmax and kcat of the SPase for sucrose was 128.8 mmol/L, 2.167 μmol/(mL·min), and 39 237.86 min-1. The recombinant SPase was used for α-arbutin production from hydroquinone and the reaction process was evaluated. The optimal conditions for synthesis of α-arbutin by SPase were 40 g/L hydroquinone, 5:1 molar ratio of sucrose and hydroquinone, and 250 U/mL recombinant SPase at pH 7.0 and 30 °C for 24 h in the dark, and then 500 U/mL glucoamylase was added at 40°C for 2.5 h. Under the optimized process, the yield of α-arbutin reached 98 g/L, and the hydroquinone conversion rate was close to 99%. In summary, the recombinant SPase was cloned and characterized, and its application for α-arbutin production was feasible.

12.
Chinese Journal of Biotechnology ; (12): 1568-1577, 2020.
Article in Chinese | WPRIM | ID: wpr-826820

ABSTRACT

Catalase catalyzes the decomposition of H₂O₂ to H₂O and O₂, and has a wide range of industrial applications. However, most catalases used in the textile and paper industries are often subjected to high-alkaline challenges which makes it necessary to develop alkaline catalase. In this study, a catalase from Corynebacterium glutamicum was expressed in Escherichia coli, and the expression conditions were optimized. The recombinant catalase was purified by Ni-chelating affinity chromatography, and the recombinant enzyme was characterized. The optimal conditions of producing the recombinant catalase were: an IPTG concentration of 0.2 mmol/L, a culturing temperature of 25 °C and a culturing time of 11 h. The purified catalase had a specific activity of 55 266 U/mg, and it had a high activity in the pH range of 4.0 to11.5, with the highest activity at pH 11.0. When treated in pH 11.0 for 3 h, the enzyme retained 93% of its activity, indicating that the enzyme was qualified with a favorable stability under high-alkaline condition. The recombinant catalase had maximal activity at 30 °C, and showed a satisfactory thermal stability at a range of 25 °C to 50 °C. The apparent Km and Vmax values of purified catalase were 25.89 mmol/L and 185.18 mmol/(minmg), respectively. Besides, different inhibitors, such as sodium dodecyl sulfate (SDS), urea, NaN₂, β-mercaptoethanol, and EDTA had different degrees of inhibition on enzyme activity. The catalase from C. glutamicum shows high catalytic efficiency and high alkaline stability, suggesting its potential utilization in industrial production.

13.
Chinese Journal of Biotechnology ; (12): 1286-1294, 2019.
Article in Chinese | WPRIM | ID: wpr-771800

ABSTRACT

Biogenic amines (BAs) are low molecular weight organic compounds that present in fermented foods. Large amount of ingested biogenic amines can cause allergy or significant symptoms. Reduction of BAs by enzymatic reaction in fermented foods is one of the most efficient methods for removal of biohazard compounds and assurance food safety. In this study, the multicopper oxidase (MCO) gene in the genome of Lactobacillus fermentum was successfully cloned in Escherichia coli BL21 and expressed at 484 U/L. The recombinant MCO was purified by the immobilized metal affinity chromatography method. The optimal reaction temperature and pH for this enzyme was detected to be 50 °C and 3.5. The Km and Vmax values of the recombinant MCO was determined to be 1.30 mmol/L and 7.67×10⁻² mmol/(L·min). Moreover, this MCO dramatically degrades histamine and tyramine by 51.6% and 40.9%, and can degrade other BAs including tryptamine, phenylethylamine, putrescine, cadaverine and spermidine, and was found to be tolerant to 18% (W/V) NaCl. The recombinant MCO is also capable of degrading BAs in soy sauce. The degradation rate of total BAs in soy sauce reaches 10.6% though a relatively low level of enzyme (500 U/L) is used. Multicopper oxidase has the potential to degrade biogenic amines in fermented foods, which lays a foundation for the further application of this kind of food enzymes.


Subject(s)
Biogenic Amines , Cadaverine , Escherichia coli , Limosilactobacillus fermentum , Oxidoreductases
14.
Chinese Journal of Biotechnology ; (12): 415-424, 2019.
Article in Chinese | WPRIM | ID: wpr-771365

ABSTRACT

Acid protease, an important aspartic protease, has been widely used in food, pharmaceutical and tanning industries. To promote the research and application of acid protease, an acid protease gene (pepA) from Aspergillus oryzae was obtained from fermented soy based on metagenome sequencing, and then cloned and transformed into Pichia pastoris GS115 for heterologous expression. The characteristic of recombinant PepA was also investigated. The activity of acid protease in the culture supernatant of P. pastoris was 50.62 U/mL. The molecular mass of PepA was about 50 kDa, and almost no other proteins in the supernatant were observed, as shown by SDS-PAGE. The optimum pH and temperature of PepA were determined as pH 4.5 and 50 ℃. Mn²⁺ and Cu²⁺ enhanced the activity of PepA, whereas Fe³⁺, Fe²⁺ and Ca² had inhibitory effects on its activity. The above findings can provide guidance for heterologous expression and industrial application of acid protease from Aspergillus oryzae.


Subject(s)
Aspergillus oryzae , Cloning, Molecular , Endopeptidases , Hydrogen-Ion Concentration , Pichia , Recombinant Proteins , Temperature
15.
Chinese Journal of Biotechnology ; (12): 1147-1155, 2018.
Article in Chinese | WPRIM | ID: wpr-687702

ABSTRACT

Urate oxidase (Uox), an enzyme catalyzing oxidation of uric acid to allantoin, is widely used as diagnostic reagents and for treatments of uarthritis and hyperuricemia diseases. In our study, a higher Uox producer, bacterial strain OUC-1, was isolated from soil samples. The 16S rRNA gene sequence of strain OUC-1 showed 99% identity to the homologous fragments of Bacillus fastidiosus. After purification, Uox showed the optimal pH and temperature was 10.0 and 40 °C. The Km value of Uox was (0.15±0.04) mmol/L (n=5) with uric acid as the substrate. Uox activity was enhanced by Mg²⁺, and seriously inhibited by Zn²⁺ and SDS. Then the uox gene of B. fastidiosus OUC-1 was amplified and sequenced. The 3D structures of Uox, predicted with SWISS-MODEL, showed a homotetramer structure with a subunit molecular weight of 35.38 kDa. Finally, the gene coding for the B. fastidiosus Uox was successfully cloned and heterologously expressed in E. coli, which provides theoretical basis and technical support for improvement of Uox in the future.

16.
Chinese Journal of Biotechnology ; (12): 1156-1168, 2018.
Article in Chinese | WPRIM | ID: wpr-687701

ABSTRACT

Trametes versicolor has strong ability to degrade environmental organic pollutants. NADPH-cytochrome P450 reductase (CPR) of T. versicolor transfers electron to cytochrome P450s (CYPs) and participates in the degradation process of organic pollutants. Sequence analysis showed that the genome of T. versicolor contains 1 potential CPR and multiple potential CYP sequences. To further study the molecular mechanism for the involvement of T. versicolor CPR in the cellular degradation of organic pollutants, a CPR gene from T. versicolor was cloned and heterologously expressed in Escherichia coli. Subsequently, the main properties of the recombinant enzyme were investigated. A truncated CPR protein lacking the predicted membrane anchor region (residues 1-24), named CPRΔ24, was overexpressed as a soluble form in E. coli. The recombinant CPRΔ24 protein showed a molecular weight consistent with the theoretical value of 78 kDa. Recombinant CPRΔ24 was purified using a Ni²⁺-chelating column followed by size exclusion chromatography. The specific activity of the purified CPRΔ24 was 5.82 U/mg. The CPRΔ24 enzyme displayed the maximum activity at 35 ℃ and pH 8.0. It has different degrees of tolerance against several types of metal ions and organic solvents. The apparent Km and kcat values of recombinant CPRΔ24 for NADPH were 19.7 μmol/L and 3.31/s, respectively, and those for the substrate cytochrome c were 25.9 μmol/L and 10.2/s, respectively, under conditions of 35 ℃ and pH 8.0. The above research provides the basis for exploring the functional mechanism of T. versicolor CPR in the degradation pathway of environmental organic pollutants.

17.
Chinese Journal of Biotechnology ; (12): 1178-1188, 2018.
Article in Chinese | WPRIM | ID: wpr-687699

ABSTRACT

With the discovery of the significant medicinal value of alginate oligosaccharides and bioethanol produced by microalgae, alginate lyase has been the focus of research in all fields. Five alginate lyase genes in cluster from Vibrio alginolyticus were cloned and expressed in Escherichia coli. SDS-PAGE and enzyme activity showed that four of the five genes have the activity to degrade alginate. Optimization of the induction conditions, protein purification and enzyme properties of rAlgV3 with the highest enzyme activity were studied. The results showed that the enzyme activity of recombinant enzyme rAlgV3 increased from 2.34×10⁴ U/L to 1.68×10⁵ U/L, which was 7.3 times higher than before. The optimal reaction temperature was 40 °C, and the enzyme was relatively stable between 4 °C and 20 °C. The enzyme had a higher activity between pH 6.5 and 9.0, with the optimum pH 8.0. It showed a wide range of pH that the alginate lyase can exist stably between pH 4.5 and 9.5. Appropriate concentrations of NaCl and Fe²⁺, Fe³⁺ ions promoted enzyme activity. SDS and Cu²⁺ ions inhibited the enzyme activity. The enzyme degraded Poly-M fragments and Poly-G fragments, with a wide range of substrate properties. The degraded product of sodium alginate of rAlgV3 analyzed by ESI-MS mainly was oligosaccharides with a polymerization degree of 2 to 3, which means that rAlgV3 was an endo-type alginate lyase. This enzyme has the potential in the development of third-generation bioethanol and the production of alginate oligosaccharides.

18.
Electron. j. biotechnol ; 19(6): 79-83, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840317

ABSTRACT

Background: Cold-active endo-1, 4-β-glucanase (EglC) can decrease energy costs and prevent product denaturation in biotechnological processes. However, the nature EglC from C. farmeri A1 showed very low activity (800 U/L). In an attempt to increase its expression level, C. farmeri EglC was expressed in Escherichia coli as an N-terminal fusion to protein S (ProS) from Myxococcus xanthus. Results: A novel expression vector, pET(ProS-EglC), was successfully constructed for the expression of C. farmeri EglC in E. coli. SDS-PAGE showed that the recombinant protein (ProS-EglC) was approximately 60 kDa. The activity of ProS-EglC was 12,400 U/L, which was considerably higher than that of the nature EglC (800 U/L). ProS-EglC was active at pH 6.5-pH 8.0, with optimum activity at pH 7.0. The recombinant protein was stable at pH 3.5-pH 6.5 for 30 min. The optimal temperature for activity of ProS-EglC was 30°C-40°C. It showed greater than 50% of maximum activity even at 5°C, indicating that the ProS-EglC is a cold-active enzyme. Its activity was increased by Co2+ and Fe2+, but decreased by Cd2+, Zn2+, Li+, methanol, Triton-X-100, acetonitrile, Tween 80, and SDS. Conclusions: The ProS-EglC is promising in application of various biotechnological processes because of its cold-active characterizations. This study also suggests a useful strategy for the expression of foreign proteins in E. coli using a ProS tag.


Subject(s)
Cellulases/metabolism , Citrobacter/enzymology , Escherichia coli/enzymology , Myxococcus xanthus/enzymology , Cold Temperature , Genetic Vectors , Recombinant Proteins
19.
Chinese Journal of Biochemical Pharmaceutics ; (6): 154-157, 2016.
Article in Chinese | WPRIM | ID: wpr-501680

ABSTRACT

Objective To screen a thermostable urate oxidase-producing strain, optimize the fermentation conditions and study the enzymatic properties.Methods A urate oxidase-producing strain was screened from high temperature starter based on transparent circle method.Its 16S rDNA sequence was then amplified and analyzed.Meanwhile, the phylogenetic trees were built.Optimization of the fermentation conditions from this strain was carried out.The enzymatic properties of urate oxidase were studied.Results A urate oxidase-producing strain, named Bacillus subtilis ZX-6 by molecular identification, was obtained.The production of urate oxidase under the optimized conditons (135.9 U/L) was 133.7%higher than before.The optimum reaction temperature and pH were 45℃ and 7.6 respectively.The residual activity of urate oxidase at 37℃ for 48 h was still 17.2%.Conclusion The successful screening of a thermostable urate oxidase-producing strain and optimization of the fermentation conditions will lay a foundation for the further research.

20.
Electron. j. biotechnol ; 14(4): 7-7, July 2011. ilus, tab
Article in English | LILACS | ID: lil-640502

ABSTRACT

The gene dhaT from Klebsiella pneumoniae encoding 1,3-propanediol oxidoreductase (PDOR) was de novo synthesized by splicing overlap extension polymerase chain reaction (SOE-PCR) primarily according to Escherichia coli’s codon usage, as well as mRNA secondary structure. After optimization, Codon Adaptation Index (CAI) value was improved from 0.75 to 0.83, meanwhile energy of mRNA secondary structure was increased from -400.1 to -86.8 kcal/mol. This synthetic DNA was under control by phage T7 promoter in the expression vector pET-15b and transformed into the E. coli BL21 (DE3) strain. Inducers such as isopropyl beta-D-thiogalactoside (IPTG) and lactose were compared by activity at different inducing time. The activity of PDOR after codon optimized was 385.4 +/- 3.6 U/mL, which was almost 5-fold higher than wild type (82.3 +/- 1.5 U/ml) under the flask culture at 25ºC for 10 hrs. Then his-tagged enzyme was separated by using Ni-IDA column. The favorite environment for enzyme activity was at 5°C and pH 10.0, PDOR showed a certainly stability in potassium carbonate buffer for 2 hrs at diverse temperatures, enzyme activity was significantly improved by Mn2+.


Subject(s)
Alcohol Dehydrogenase , Codon/genetics , Escherichia coli/genetics , Propylene Glycols , Adaptation, Physiological , Escherichia coli/enzymology , Gene Expression , Genes, Bacterial , RNA, Messenger , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL